Adaptations in Maternofetal Calcium Transport in Relation to Placental Size and Fetal Sex in Mice
نویسندگان
چکیده
Appropriate placental transport of calcium is essential for normal fetal skeletal mineralization. In fetal growth restriction (FGR), the failure of a fetus to achieve its growth potential, a number of placental nutrient transport systems show reduced activity but, in the case of calcium, placental transport is increased. In a genetic mouse model of FGR this increase, or adaptation, maintains appropriate fetal calcium content, relative to the size of the fetus, despite a small, dysfunctional placenta. It is unknown whether such an adaptation is also apparent in small, but normally functioning placentas. We tested the hypothesis that calcium transfer would be up-regulated in the lightest vs. heaviest placentas in the same C57Bl/6J wild-type (WT) mouse litter. Since lightest placentas are often from females, we also assessed whether fetal sex influenced placental calcium transfer. Placentas and fetuses were collected at embryonic day (E)16.5 and 18.5; the lightest and heaviest placentas, and female and male fetuses, were identified. Unidirectional maternofetal calcium clearance (CaKmf) was assessed following 45Ca administration to the dam and subsequent radiolabel counts within the fetuses. Placental expression of calcium pathway components was measured by Western blot. Data (median) are lightest placenta expressed as percentage of the heaviest within a litter and analyzed by Wilcoxon signed-rank test. In WT mice having normally grown fetuses, CaKmf, per gram placenta near term, in the lightest placentas was increased (126%; P < 0.05) in association with reduced fetal calcium accretion earlier in gestation (92%; P < 0.05), that was subsequently normalized near term. Increased placental expression of calbindin-D9K, an important calcium binding protein, was observed in the lightest placentas near term (122%; P < 0.01). There was no difference in fetal calcium accretion between male and female littermates but a trend toward higher CaKmf in females (P = 0.055). These data suggest a small, normal placenta adapts calcium transfer according to its size, as previously demonstrated in a mouse model of FGR. Fetal sex had limited influence on this adaptive increase. These adaptations are potentially driven by fetal nutrient demand, as evidenced by the normalization of fetal calcium content. Understanding the regulatory mechanisms involved may provide novel avenues for treating placental dysfunction.
منابع مشابه
Placental-specific Igf2 knockout mice exhibit hypocalcemia and adaptive changes in placental calcium transport.
Evidence is emerging that the ability of the placenta to supply nutrients to the developing fetus adapts according to fetal demand. To examine this adaptation further, we tested the hypothesis that placental maternofetal transport of calcium adapts according to fetal calcium requirements. We used a mouse model of fetal growth restriction, the placental-specific Igf2 knockout (P0) mouse, shown p...
متن کاملIncreased maternofetal calcium flux in parathyroid hormone-related protein-null mice
The role of parathyroid hormone-related protein (PTHrP) in fetal calcium homeostasis and placental calcium transport was examined in mice homozygous for the deletion of the PTHrP gene (PTHrP-/- null; NL) compared to PTHrP+/+ (wild-type; WT) and PTHrP+/- (heterozygous; HZ) littermates. Fetal blood ionized calcium was significantly reduced in NL fetuses compared to WT and HZ groups at 18 days of ...
متن کاملFetal gender prediction based on placental location throughout first trimester transabdominal ultrasound
Background: Awareness of fetal gender at primary stages of pregnancy is very important. Fetal sex determination can reveal pressing information regarding fetal health. One of the methods of determining gender in the first trimester is according to the location of placenta. . This study investigated the accuracy and sensitivity of this method with trans-abdominal ultrasound in determining the se...
متن کاملeNOS knockout mouse as a model of fetal growth restriction with an impaired uterine artery function and placental transport phenotype.
Fetal growth restriction (FGR) is the inability of a fetus to reach its genetically predetermined growth potential. In the absence of a genetic anomaly or maternal undernutrition, FGR is attributable to "placental insufficiency": inappropriate maternal/fetal blood flow, reduced nutrient transport or morphological abnormalities of the placenta (e.g., altered barrier thickness). It is not known w...
متن کاملتعیین جنسیت جنین بر اساس محل جفت با استفاده از سونوگرافی دو بعدی
Background: Early detection of fetal gender can provide an alarm for parents who complicated by genetic disorders. Moreover, the invasive tests are used for detecting any sex-specific genetic syndromes before 12 weeks of gestation. This study was de-signed to discover any association between placental location and fetal gender between 11 to 13+6 weeks of gestation. Methods: A cross-sectional s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017